联系客服
客服二维码

联系客服获取更多资料

微信号:LingLab1

客服电话:010-82185409

意见反馈
关注我们
关注公众号

关注公众号

linglab语言实验室

回到顶部
flink流处理从0到1

454 阅读 2020-08-28 09:13:02 上传

以下文章来源于 汉语教学技术

一、DataStream API之Data Sources(消费者之数据源)

介绍:

source是程序的数据源输入,你可以通过StreamExecutionEnvironment.addSource(sourceFunction)来为你的程序添加一个source。 flink提供了大量的已经实现好的source方法,你也可以自定义source 通过实现sourceFunction接口来自定义无并行度的source, 或者你也可以通过实现ParallelSourceFunction 接口 or 继承RichParallelSourceFunction 来自定义有并行度的source。

类型:
基于文件

readTextFile(path) 读取文本文件,文件遵循TextInputFormat 读取规则,逐行读取并返回。

基于socket

socketTextStream从socker中读取数据,元素可以通过一个分隔符切开。

基于集合

fromCollection(Collection) 通过java 的collection集合创建一个数据流,集合中的所有元素必须是相同类型的。

自定义输入

addSource 可以实现读取第三方数据源的数据 系统内置提供了一批connectors,连接器会提供对应的source支持【kafka】

代码实现:
1、fromCollection
package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.ArrayList;

/**
* 把collection集合作为数据源
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingFromCollection {

public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

ArrayList<Integer> data = new ArrayList<>();
       data.add(10);
       data.add(15);
       data.add(20);



//指定数据源
DataStreamSource<Integer> collectionData = env.fromCollection(data);

//通map对数据进行处理
DataStreamnum = collectionData.map(new MapFunction<Integer, Integer>() {
           @Override
public Integer map(Integer value) throws Exception {
return value + 1;
           }
       });

//直接打印
       num.print().setParallelism(1);

       env.execute("StreamingFromCollection");


   }
}


2、 创建自定义单并行度为1的SourceFunction(addSource)

① 创建自定义单并行度为1的SourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.streaming.api.functions.source.SourceFunction;

/**
* 自定义实现并行度为1的source
*
* 模拟产生从1开始的递增数字
*
*
* 注意:
* SourceFunction 和 SourceContext 都需要指定数据类型,如果不指定,代码运行的时候会报错
* Caused by: org.apache.flink.api.common.functions.InvalidTypesException:
* The types of the interface org.apache.flink.streaming.api.functions.source.SourceFunction could not be inferred.
* Support for synthetic interfaces, lambdas, and generic or raw types is limited at this point
*
*
* Created by xuwei.tech on 2018/10/23.
*/
public class MyNoParalleSource implements SourceFunction<Long>{

private long count = 1L;

private boolean isRunning = true;

/**
    * 主要的方法
    * 启动一个source
    * 大部分情况下,都需要在这个run方法中实现一个循环,这样就可以循环产生数据了
    *
    * @param ctx
    * @throws Exception
    */
@Override
public void run(SourceContextctx) throws Exception {
while(isRunning){
           ctx.collect(count);
count++;
//每秒产生一条数据
           Thread.sleep(1000);
       }
   }

/**
    * 取消一个cancel的时候会调用的方法
    *
    */
@Override
public void cancel() {
       isRunning = false;
   }
}



②实现自定义单并行度为1的SourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;

/**
* 使用并行度为1的source
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoWithMyNoPralalleSource {

public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

//获取数据源
DataStreamSource<Long> text = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1

DataStream<Long> num = text.map(new MapFunction<Long, Long>() {
           @Override
public Long map(Long value) throws Exception {
System.out.println("接收到数据:" + value);
return value;
           }
       });

//每2秒钟处理一次数据
DataStream<Long> sum = num.timeWindowAll(Time.seconds(2)).sum(0);

//打印结果
       sum.print().setParallelism(1);

String jobName = StreamingDemoWithMyNoPralalleSource.class.getSimpleName();
       env.execute(jobName);
   }
}

3、 创建自定义多并行度为1的ParallelSourceFunction (addSource)

① 创建自定义多并行度为1的ParallelSourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.streaming.api.functions.source.ParallelSourceFunction;

/**
* 自定义实现一个支持并行度的source
* Created by xuwei.tech on 2018/10/23.
*/
public class MyParalleSource implements ParallelSourceFunction<Long> {

private long count = 1L;

private boolean isRunning = true;

/**
    * 主要的方法
    * 启动一个source
    * 大部分情况下,都需要在这个run方法中实现一个循环,这样就可以循环产生数据了
    *
    * @param ctx
    * @throws Exception
    */
@Override
public void run(SourceContextctx) throws Exception {
while(isRunning){
           ctx.collect(count);
count++;
//每秒产生一条数据
           Thread.sleep(1000);
       }
   }

/**
    * 取消一个cancel的时候会调用的方法
    *
    */
@Override
public void cancel() {
       isRunning = false;
   }
}




②实现自定义多并行度为1的ParallelSourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;

/**
* 使用多并行度的source
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoWithMyPralalleSource {

public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

//获取数据源
DataStreamSource<Long> text = env.addSource(new MyParalleSource()).setParallelism(2);

DataStream<Long> num = text.map(new MapFunction<Long, Long>() {
           @Override
public Long map(Long value) throws Exception {
System.out.println("接收到数据:" + value);
return value;
           }
       });

//每2秒钟处理一次数据
DataStream<Long> sum = num.timeWindowAll(Time.seconds(2)).sum(0);

//打印结果
       sum.print().setParallelism(1);

String jobName = StreamingDemoWithMyPralalleSource.class.getSimpleName();
       env.execute(jobName);
   }
}



4、 创建自定义多并行度为1的RichParallelSourceFunction(addSource)

① 创建自定义多并行度为1的RichParallelSourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;

/**
* 自定义实现一个支持并行度的source
*
* RichParallelSourceFunction 会额外提供open和close方法
* 针对source中如果需要获取其他链接资源,那么可以在open方法中获取资源链接,在close中关闭资源链接
*
* Created by xuwei.tech on 2018/10/23.
*/
public class MyRichParalleSource extends RichParallelSourceFunction{

private long count = 1L;

private boolean isRunning = true;

/**
    * 主要的方法
    * 启动一个source
    * 大部分情况下,都需要在这个run方法中实现一个循环,这样就可以循环产生数据了
    *
    * @param ctx
    *
@throws Exception
    */

@Override
public void run(SourceContextctx)throws Exception {
while(isRunning){
           ctx.collect(count);
           count++;
//每秒产生一条数据
           Thread.sleep(1000);
       }
   }

/**
    * 取消一个cancel的时候会调用的方法
    *
    */
@Override
public void cancel() {
       isRunning = false;
   }


/**
    * 这个方法只会在最开始的时候被调用一次
    * 实现获取链接的代码
    * @param parameters
    *
@throws Exception
    */

@Override
public void open(Configuration parameters) throws Exception {
       System.out.println("open.............");
super.open(parameters);
   }

/**
    * 实现关闭链接的代码
    * @throws Exception
    */

@Override
public void close() throws Exception {
super.close();
   }
}



②实现自定义多并行度为1的RichParallelSourceFunction

package xuwei.tech.streaming.custormSource;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;

/**
* 使用多并行度的source
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoWithMyRichPralalleSource {

public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

//获取数据源
DataStreamSource<Long> text = env.addSource(new MyRichParalleSource()).setParallelism(2);

DataStream<Long> num = text.map(new MapFunction<Long, Long>() {
           @Override
public Long map(Long value) throws Exception {
System.out.println("接收到数据:" + value);
return value;
           }
       });

//每2秒钟处理一次数据
DataStream<Long> sum = num.timeWindowAll(Time.seconds(2)).sum(0);

//打印结果
       sum.print().setParallelism(1);

String jobName = StreamingDemoWithMyRichPralalleSource.class.getSimpleName();
       env.execute(jobName);
   }
}

二、DataStream API之Transformations

介绍:

  1. map:输入一个元素,然后返回一个元素,中间可以做一些清洗转换等操作

  2. flatmap:输入一个元素,可以返回零个,一个或者多个元素

  3. filter:过滤函数,对传入的数据进行判断,符合条件的数据会被留下

  4. keyBy:根据指定的key进行分组,相同key的数据会进入同一个分区【典型用法见备注】

  5. reduce:对数据进行聚合操作,结合当前元素和上一次reduce返回的值进行聚合操作,然后返回一个新的值

  6. aggregations:sum(),min(),max()等

  7. window:在后面单独详解

  8. Union:合并多个流,新的流会包含所有流中的数据,但是union是一个限制,就是所有合并的流类型必须是一致的。

  9. Connect:和union类似,但是只能连接两个流,两个流的数据类型可以不同,会对两个流中的数据应用不同的处理方法。

  10. CoMap, CoFlatMap:在ConnectedStreams中需要使用这种函数,类似于map和flatmap

  11. Split:根据规则把一个数据流切分为多个流

  12. Select:和split配合使用,选择切分后的流

代码实现:
1、filter
package xuwei.tech.streaming.streamAPI;

import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import xuwei.tech.streaming.custormSource.MyNoParalleSource;

/**
* Filter演示
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoFilter {

public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

//获取数据源
DataStreamSource<Long> text = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1

DataStream<Long> num = text.map(new MapFunction<Long, Long>() {
           @Override
public Long map(Long value) throws Exception {
System.out.println("原始接收到数据:" + value);
return value;
           }
       });

//执行filter过滤,满足条件的数据会被留下
DataStream<Long> filterData = num.filter(new FilterFunction<Long>() {
//把所有的奇数过滤掉
           @Override
public boolean filter(Long value) throws Exception {
return value % 2 == 0;
           }
       });

DataStream<Long> resultData = filterData.map(new MapFunction<Long, Long>() {
           @Override
public Long map(Long value) throws Exception {
System.out.println("过滤之后的数据:" + value);
return value;
           }
       });


//每2秒钟处理一次数据
DataStream<Long> sum = resultData.timeWindowAll(Time.seconds(2)).sum(0);

//打印结果
       sum.print().setParallelism(1);

String jobName = StreamingDemoFilter.class.getSimpleName();
       env.execute(jobName);
   }
}

2、Split
package xuwei.tech.streaming.streamAPI;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.collector.selector.OutputSelector;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SplitStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import xuwei.tech.streaming.custormSource.MyNoParalleSource;

import java.util.ArrayList;

/**
* split
*
* 根据规则把一个数据流切分为多个流
*
* 应用场景:
* 可能在实际工作中,源数据流中混合了多种类似的数据,多种类型的数据处理规则不一样,所以就可以在根据一定的规则,
* 把一个数据流切分成多个数据流,这样每个数据流就可以使用不用的处理逻辑了
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoSplit {

public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

//获取数据源
DataStreamSource<Long> text = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1

//对流进行切分,按照数据的奇偶性进行区分
SplitStream<Long> splitStream = text.split(new OutputSelector<Long>() {
           @Override
public Iterable<String> select(Long value) {
ArrayList<String> outPut = new ArrayList<>();
if (value % 2 == 0) {
                   outPut.add("even");//偶数
               } else {
                   outPut.add("odd");//奇数
               }
return outPut;
           }
       });

//选择一个或者多个切分后的流
DataStream<Long> evenStream = splitStream.select("even");
DataStream<Long> oddStream = splitStream.select("odd");

DataStream<Long> moreStream = splitStream.select("odd","even");


//打印结果
       moreStream.print().setParallelism(1);

String jobName = StreamingDemoSplit.class.getSimpleName();
       env.execute(jobName);
   }
}


3、union(注意两个数据源类型必须相同)
package xuwei.tech.streaming.streamAPI;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import xuwei.tech.streaming.custormSource.MyNoParalleSource;

/**
* union
* 合并多个流,新的流会包含所有流中的数据,但是union是一个限制,就是所有合并的流类型必须是一致的
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoUnion {

public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

//获取数据源
DataStreamSource<Long> text1 = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1

DataStreamSource<Long> text2 = env.addSource(new MyNoParalleSource()).setParallelism(1);

//把text1和text2组装到一起
DataStream<Long> text = text1.union(text2);

DataStream<Long> num = text.map(new MapFunction<Long, Long>() {
           @Override
public Long map(Long value) throws Exception {
System.out.println("原始接收到数据:" + value);
return value;
           }
       });



//每2秒钟处理一次数据
DataStream<Long> sum = num.timeWindowAll(Time.seconds(2)).sum(0);

//打印结果
       sum.print().setParallelism(1);

String jobName = StreamingDemoUnion.class.getSimpleName();
       env.execute(jobName);
   }
}


4、Connect(可以合并两种类型不一样的数据流)
package xuwei.tech.streaming.streamAPI;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import xuwei.tech.streaming.custormSource.MyNoParalleSource;

/**
* connect
* 和union类似,但是只能连接两个流,两个流的数据类型可以不同,会对两个流中的数据应用不同的处理方法
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoConnect {

public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

//获取数据源
DataStreamSource<Long> text1 = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1

DataStreamSource<Long> text2 = env.addSource(new MyNoParalleSource()).setParallelism(1);
SingleOutputStreamOperator<String> text2_str = text2.map(new MapFunction<Long, String>() {
           @Override
public String map(Long value) throws Exception {
return "str_" + value;
           }
       });

ConnectedStreamsString> connectStream = text1.connect(text2_str);

SingleOutputStreamOperator<Object> result = connectStream.map(new CoMapFunction<Long, String, Object>() {
           @Override
public Object map1(Long value) throws Exception {
return value;
           }

           @Override
public Object map2(String value) throws Exception {
return value;
           }
       });


//打印结果
       result.print().setParallelism(1);

String jobName = StreamingDemoConnect.class.getSimpleName();
       env.execute(jobName);
   }
}

5、broadcast(broadcast分区规则)
package xuwei.tech.streaming.streamAPI;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import xuwei.tech.streaming.custormSource.MyNoParalleSource;

/**
*  broadcast分区规则
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoWithMyNoPralalleSourceBroadcast {

public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
       env.setParallelism(4);

//获取数据源
DataStreamSource<Long> text = env.addSource(new MyNoParalleSource()).setParallelism(1);//注意:针对此source,并行度只能设置为1

DataStream<Long> num = text.broadcast().map(new MapFunction<Long, Long>() {
           @Override
public Long map(Long value) throws Exception {
long id = Thread.currentThread().getId();
System.out.println("线程id:"+id+",接收到数据:" + value);
return value;
           }
       });

//每2秒钟处理一次数据
DataStream<Long> sum = num.timeWindowAll(Time.seconds(2)).sum(0);

//打印结果
       sum.print().setParallelism(1);

String jobName = StreamingDemoWithMyNoPralalleSourceBroadcast.class.getSimpleName();
       env.execute(jobName);
   }
}

总结:

Flink 状态(State)管理与恢复

一. 状态(State)
介绍:
  • 我们前面写的word count的例子,没有包含状态管理。如果一个task在处理过程中挂掉了,那么它在内存中的状态都会丢失,所有的数据都需要重新计算。从容错和消息处理的语义上(at least once, exactly once),Flink引入了state和checkpoint。

  • 首先区分一下两个概念

  • state一般指一个具体的task/operator的状态【state数据默认保存在java的堆内存中】

  • 而checkpoint【可以理解为checkpoint是把state数据持久化存储了】,则表示了一个Flink Job在一个特定时刻的一份全局状态快照,即包含了所有task/operator的状态

  • 注意:task是Flink中执行的基本单位。operator指算子(transformation)。

  • State可以被记录,在失败的情况下数据还可以恢复

  • Flink中有两种基本类型的State

  • Keyed State

  • Operator State

  • Keyed State和Operator State,可以以两种形式存在:

  • 原始状态(raw state)

  • 托管状态(managed state)

  • 托管状态是由Flink框架管理的状态

  • 而原始状态,由用户自行管理状态具体的数据结构,框架在做checkpoint的时候,使用byte[]来读写状态内容,对其内部数据结构一无所知。

  • 通常在DataStream上的状态推荐使用托管的状态,当实现一个用户自定义的operator时,会使用到原始状态。

1. State-Keyed State
  • 顾名思义,就是基于KeyedStream上的状态。这个状态是跟特定的key绑定的,对KeyedStream流上的每一个key,都对应一个state。

  • stream.keyBy(…)

  • 保存state的数据结构

  • ValueState:即类型为T的单值状态。这个状态与对应的key绑定,是最简单的状态了。它可以通过update方法更新状态值,通过value()方法获取状态值

  • ListState:即key上的状态值为一个列表。可以通过add方法往列表中附加值;也可以通过get()方法返回一个Iterable来遍历状态值

  • ReducingState:这种状态通过用户传入的reduceFunction,每次调用add方法添加值的时候,会调用reduceFunction,最后合并到一个单一的状态值

  • MapState:即状态值为一个map。用户通过put或putAll方法添加元素,>

  • 需要注意的是,以上所述的State对象,仅仅用于与状态进行交互(更新、删除、清空等),而真正的状态值,有可能是存在内存、磁盘、或者其他分布式存储系统中。相当于我们只是持有了这个状态的句柄

2. State-Operator State
  • 与Key无关的State,与Operator绑定的state,整个operator只对应一个state

  • 保存state的数据结构

  • ListState

  • 举例来说,Flink中的Kafka Connector,就使用了operator state。它会在每个connector实例中,保存该实例中消费topic的所有(partition, offset)映射

二、状态容错

1、checkpoint

  • 依靠checkPoint机制

  • 保证exactly-once

  • 只能保证Flink系统内的exactly-once

  • 对于source和sink需要依赖外部的组件一同保证

checkPoint介绍:
  • 为了保证state的容错性,Flink需要对state进行checkpoint。

  • Checkpoint是Flink实现容错机制最核心的功能,它能够根据配置周期性地基于Stream中各个Operator/task的状态来生成快照,从而将这些状态数据定期持久化存储下来,当Flink程序一旦意外崩溃时,重新运行程序时可以有选择地从这些快照进行恢复,从而修正因为故障带来的程序数据异常

  • Flink的checkpoint机制可以与(stream和state)的持久化存储交互的前提:

  • 持久化的source,它需要支持在一定时间内重放事件。这种sources的典型例子是持久化的消息队列(比如Apache Kafka,RabbitMQ等)或文件系统(比如HDFS,S3,GFS等)

  • 用于state的持久化存储,例如分布式文件系统(比如HDFS,S3,GFS等)

checkPoint配置:
  • 默认checkpoint功能是disabled的,想要使用的时候需要先启用

  • checkpoint开启之后,默认的checkPointMode是Exactly-once

  • checkpoint的checkPointMode有两种,Exactly-once和At-least-once

  • Exactly-once对于大多数应用来说是最合适的。At-least-once可能用在某些延迟超低的应用程序(始终延迟为几毫秒)

checkpoint配置conf
  • 默认checkpoint功能是disabled的,想要使用的时候需要先启用

  • StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

  • // 每隔1000 ms进行启动一个检查点【设置checkpoint的周期】

  • env.enableCheckpointing(1000);

  • // 高级选项:

  • // 设置模式为exactly-once (这是默认值)

  • env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);

  • // 确保检查点之间有至少500 ms的间隔【checkpoint最小间隔】

  • env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);

  • // 检查点必须在一分钟内完成,或者被丢弃【checkpoint的超时时间】

  • env.getCheckpointConfig().setCheckpointTimeout(60000);

  • // 同一时间只允许进行一个检查点

  • env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);

  • // 表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint【详细解释见备注】

  • env.getCheckpointConfig().enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

2、State Backend(状态的后端存储)

介绍:
  • 默认情况下,state会保存在taskmanager的内存中,checkpoint会存储在JobManager的内存中。

  • state 的store和checkpoint的位置取决于State Backend的配置

  • env.setStateBackend(…)

  • 一共有三种State Backend

  • MemoryStateBackend

  • FsStateBackend

  • RocksDBStateBackend

分类:
1、 MemoryStateBackend
  • state数据保存在java堆内存中,执行checkpoint的时候,会把state的快照数据保存到jobmanager的内存中

  • 基于内存的state backend在生产环境下不建议使用

2、 FsStateBackend
  • state数据保存在taskmanager的内存中,执行checkpoint的时候,会把state的快照数据保存到配置的文件系统中

  • 可以使用hdfs等分布式文件系统

3、RocksDBStateBackend
  • RocksDB跟上面的都略有不同,它会在本地文件系统中维护状态,state会直接写入本地rocksdb中。同时它需要配置一个远端的filesystem uri(一般是HDFS),在做checkpoint的时候,会把本地的数据直接复制到filesystem中。fail over的时候从filesystem中恢复到本地

  • RocksDB克服了state受内存限制的缺点,同时又能够持久化到远端文件系统中,比较适合在生产中使用

state配置:

修改State Backend的两种方式

  • 第一种:单任务调整

  • 修改当前任务代码

  • env.setStateBackend(new FsStateBackend("hdfs://namenode:9000/flink/checkpoints"));

  • 或者new MemoryStateBackend()

  • 或者new RocksDBStateBackend(filebackend, true);【需要添加第三方依赖】

  • 第二种:全局调整

  • 修改flink-conf.yaml

  • state.backend: filesystem

  • state.checkpoints.dir: hdfs://namenode:9000/flink/checkpoints

  • 注意:state.backend的值可以是下面几种:jobmanager(MemoryStateBackend), filesystem(FsStateBackend), rocksdb(RocksDBStateBackend)

三、Restart Strategies(重启策略)

介绍:
  • Flink支持不同的重启策略,以在故障发生时控制作业如何重启

  • 集群在启动时会伴随一个默认的重启策略,在没有定义具体重启策略时会使用该默认策略。 如果在工作提交时指定了一个重启策略,该策略会覆盖集群的默认策略

  • 默认的重启策略可以通过 Flink 的配置文件 flink-conf.yaml 指定。配置参数 restart-strategy 定义了哪个策略被使用。

  • 常用的重启策略

  • 固定间隔 (Fixed delay)

  • 失败率 (Failure rate)

  • 无重启 (No restart)

  • 如果没有启用 checkpointing,则使用无重启 (no restart) 策略。

  • 如果启用了 checkpointing,但没有配置重启策略,则使用固定间隔 (fixed-delay) 策略,其中 Integer.MAX_VALUE 参数是尝试重启次数

  • 重启策略可以在flink-conf.yaml中配置,表示全局的配置。也可以在应用代码中动态指定,会覆盖全局配置

分类:
  • 1、重启策略之固定间隔 (Fixed delay)

  • 第一种:全局配置 flink-conf.yaml

  • restart-strategy: fixed-delay

  • restart-strategy.fixed-delay.attempts: 3

  • restart-strategy.fixed-delay.delay: 10 s

  • 第二种:应用代码设置

  • env.setRestartStrategy(RestartStrategies.fixedDelayRestart(

  • 3, // 尝试重启的次数

  • Time.of(10, TimeUnit.SECONDS) // 间隔 ));

2、重启策略之失败率 (Failure rate)
  • 第一种:全局配置 flink-conf.yaml

  • restart-strategy: failure-rate

  • restart-strategy.failure-rate.max-failures-per-interval: 3

  • restart-strategy.failure-rate.failure-rate-interval: 5 min

  • restart-strategy.failure-rate.delay: 10 s

  • 第二种:应用代码设置

  • env.setRestartStrategy(RestartStrategies.failureRateRestart(

  • 3, // 一个时间段内的最大失败次数

  • Time.of(5, TimeUnit.MINUTES), // 衡量失败次数的是时间段

  • Time.of(10, TimeUnit.SECONDS) // 间隔 ));

3、重启策略之无重启 (No restart)
  • 第一种:全局配置 flink-conf.yaml

  • restart-strategy: none

  • 第二种:应用代码设置

  • env.setRestartStrategy(RestartStrategies.noRestart());

4、保存多个Checkpoint
  • 默认情况下,如果设置了Checkpoint选项,则Flink只保留最近成功生成的1个Checkpoint,而当Flink程序失败时,可以从最近的这个Checkpoint来进行恢复。但是,如果我们希望保留多个Checkpoint,并能够根据实际需要选择其中一个进行恢复,这样会更加灵活,比如,我们发现最近4个小时数据记录处理有问题,希望将整个状态还原到4小时之前

  • Flink可以支持保留多个Checkpoint,需要在Flink的配置文件conf/flink-conf.yaml中,添加如下配置,指定最多需要保存Checkpoint的个数

  • state.checkpoints.num-retained: 20

  • 这样设置以后就查看对应的Checkpoint在HDFS上存储的文件目录

  • hdfs dfs -ls hdfs://namenode:9000/flink/checkpoints

  • 如果希望回退到某个Checkpoint点,只需要指定对应的某个Checkpoint路径即可实现

6、从Checkpoint进行恢复
  • 如果Flink程序异常失败,或者最近一段时间内数据处理错误,我们可以将程序从某一个Checkpoint点进行恢复

  • bin/flink run -s hdfs://namenode:9000/flink/checkpoints/467e17d2cc343e6c56255d222bae3421/chk-56/_metadata flink-job.jar

  • 程序正常运行后,还会按照Checkpoint配置进行运行,继续生成Checkpoint数据

7、savePoint
介绍:
  • Flink通过Savepoint功能可以做到程序升级后,继续从升级前的那个点开始执行计算,保证数据不中断

  • 全局,一致性快照。可以保存数据源offset,operator操作状态等信息

  • 可以从应用在过去任意做了savepoint的时刻开始继续消费

配置使用:
  1. 在flink-conf.yaml中配置Savepoint存储位置

  • 不是必须设置,但是设置后,后面创建指定Job的Savepoint时,可以不用在手动执行命令时指定Savepoint的位置

  • state.savepoints.dir: hdfs://namenode:9000/flink/savepoints

  1. 触发一个savepoint【直接触发或者在cancel的时候触发】

  • bin/flink savepoint jobId [targetDirectory] [-yid yarnAppId]【针对on yarn模式需要指定-yid参数】

  • bin/flink cancel -s [targetDirectory] jobId [-yid yarnAppId]【针对on yarn模式需要指定-yid参数】

  1. 从指定的savepoint启动job bin/flink run -s savepointPath [runArgs]

总结:checkPoint vs savePoint
  1. checkPoint

  • 应用定时触发,用于保存状态,会过期

  • 内部应用失败重启的时候使用

  1. savePoint

  • 用户手动执行,是指向Checkpoint的指针,不会过期

  • 在升级的情况下使用

  • 注意:为了能够在作业的不同版本之间以及 Flink 的不同版本之间顺利升级,强烈推荐程序员通过 uid(String) 方法手动的给算子赋予 ID,这些 ID 将用于确定每一个算子的状态范围。如果不手动给各算子指定 ID,则会由 Flink 自动给每个算子生成一个 ID。只要这些 ID 没有改变就能从保存点(savepoint)将程序恢复回来。而这些自动生成的 ID 依赖于程序的结构,并且对代码的更改是很敏感的。因此,强烈建议用户手动的设置 ID。

9、checkpoint(检查点)
package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.runtime.state.memory.MemoryStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;

/**
* checkpoint
*
* Created by xuwei.tech on 2018/10/8.
*/
public class SocketWindowWordCountJavaCheckPoint {

public static void main(String[] args) throws Exception{
//获取需要的端口号
int port;
try {
ParameterTool parameterTool = ParameterTool.fromArgs(args);
           port = parameterTool.getInt("port");
       }catch (Exception e){
System.err.println("No port set. use default port 9000--java");
           port = 9000;
       }

//获取flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// 每隔1000 ms进行启动一个检查点【设置checkpoint的周期】
       env.enableCheckpointing(1000);
// 高级选项:
// 设置模式为exactly-once (这是默认值)
       env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
// 确保检查点之间有至少500 ms的间隔【checkpoint最小间隔】
       env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
// 检查点必须在一分钟内完成,或者被丢弃【checkpoint的超时时间】
       env.getCheckpointConfig().setCheckpointTimeout(60000);
// 同一时间只允许进行一个检查点
       env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
// 表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint【详细解释见备注】
//ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION:表示一旦Flink处理程序被cancel后,会保留Checkpoint数据,以便根据实际需要恢复到指定的Checkpoint
//ExternalizedCheckpointCleanup.DELETE_ON_CANCELLATION: 表示一旦Flink处理程序被cancel后,会删除Checkpoint数据,只有job执行失败的时候才会保存checkpoint
       env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);


//设置statebackend

//env.setStateBackend(new MemoryStateBackend());
//env.setStateBackend(new FsStateBackend("hdfs://hadoop100:9000/flink/checkpoints"));
//env.setStateBackend(new RocksDBStateBackend("hdfs://hadoop100:9000/flink/checkpoints",true));

String hostname = "hadoop100";
String delimiter = "\n";
//连接socket获取输入的数据
DataStreamSource<String> text = env.socketTextStream(hostname, port, delimiter);

// a a c

// a 1
// a 1
// c 1
DataStream<WordWithCount> windowCounts = text.flatMap(new FlatMapFunction<String, WordWithCount>() {
public void flatMap(String value, Collector<WordWithCount> out) throws Exception {
String[] splits = value.split("\\s");
for (String word : splits) {
out.collect(new WordWithCount(word, 1L));
               }
           }
       }).keyBy("word")
               .timeWindow(Time.seconds(2), Time.seconds(1))//指定时间窗口大小为2秒,指定时间间隔为1
               .sum("count");//在这里使用sum或者reduce都可以
/*.reduce(new ReduceFunction() {
                                   public WordWithCount reduce(WordWithCount a, WordWithCount b) throws Exception {

                                       return new WordWithCount(a.word,a.count+b.count);
                                   }
                               })*/

//把数据打印到控制台并且设置并行度
       windowCounts.print().setParallelism(1);

//这一行代码一定要实现,否则程序不执行
       env.execute("Socket window count");

   }

public static class WordWithCount{
public String word;
public long count;
public  WordWithCount(){}
public WordWithCount(String word,long count){
           this.word = word;
           this.count = count;
       }
       @Override
public String toString() {
return "WordWithCount{" +
"word='" + word + '\'' +
", count=" + count +
                   '}';
       }
   }
}

三、DataStream API之partition

介绍:
  1. Random partitioning:随机分区

  2. dataStream.shuffle()

  3. Rebalancing:对数据集进行再平衡,重分区,消除数据倾斜

  4. dataStream.rebalance()

  5. Rescaling:解释见备注

  6. dataStream.rescale()

  7. Custom partitioning:自定义分区

  8. 自定义分区需要实现Partitioner接口

  9. dataStream.partitionCustom(partitioner, "someKey")

  10. 或者dataStream.partitionCustom(partitioner, 0);

  11. Broadcasting:在后面单独详解

代码实现:
1、Partitioner

①创建分区类

package xuwei.tech.streaming.custormPartition;

import org.apache.flink.api.common.functions.Partitioner;

/**
* Created by xuwei.tech on 2018/10/23.
*/
public class MyPartition implements Partitioner<Long> {
@Override
public int partition(Long key, int numPartitions) {
       System.out.println("分区总数:"+numPartitions);
if(key % 2 == 0){
return 0;
       }else{
return 1;
       }
   }
}


②实现分区类的对象化

package xuwei.tech.streaming.custormPartition;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import xuwei.tech.streaming.custormSource.MyNoParalleSource;

/**
*
* 使用自定义分析
* 根据数字的奇偶性来分区
*
* Created by xuwei.tech on 2018/10/23.
*/
public class SteamingDemoWithMyParitition {

public static void main(String[] args) throws Exception{

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
       env.setParallelism(2);
DataStreamSource<Long> text = env.addSource(new MyNoParalleSource());

//对数据进行转换,把long类型转成tuple1类型
DataStream<Tuple1<Long>> tupleData = text.map(new MapFunction<Long, Tuple1<Long>>() {
           @Override
public Tuple1<Long> map(Long value) throws Exception {
return new Tuple1<>(value);
           }
       });
//分区之后的数据
DataStream<Tuple1<Long>> partitionData= tupleData.partitionCustom(new MyPartition(), 0);

DataStream<Long> result = partitionData.map(new MapFunction<Tuple1<Long>, Long>() {
           @Override
public Long map(Tuple1<Long> value) throws Exception {
System.out.println("当前线程id:" + Thread.currentThread().getId() + ",value: " + value);
return value.getField(0);
           }
       });

       result.print().setParallelism(1);

       env.execute("SteamingDemoWithMyParitition");

   }
}


四、DataStream API之Data Sink(数据落地)

介绍:
  1. writeAsText():将元素以字符串形式逐行写入,这些字符串通过调用每个元素的toString()方法来获取

  2. print() / printToErr():打印每个元素的toString()方法的值到标准输出或者标准错误输出流中

  3. 自定义输出addSink【kafka、redis】

1、内置Connectors
  1. Apache Kafka (source/sink)

  2. Apache Cassandra (sink)

  3. Elasticsearch (sink)

  4. Hadoop FileSystem (sink)

  5. RabbitMQ (source/sink)

  6. Apache ActiveMQ (source/sink)

  7. Redis (sink)

2. 自定义sink
  1. 实现自定义的sink

  2. 实现SinkFunction接口

  3. 或者继承RichSinkFunction

  4. 参考org.apache.flink.streaming.connectors.redis.RedisSink

代码
1、落地到Redis
package xuwei.tech.streaming.sink;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;

/**
* 接收socket数据,把数据保存到redis中
*
* list
*
* lpush list_key value
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingDemoToRedis {

public static void main(String[] args) throws Exception{
       StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

       DataStreamSourcetext = env.socketTextStream("hadoop100", 9000, "\n");

//lpsuh l_words word

//对数据进行组装,把string转化为tuple2,string>
       DataStreamString, String>> l_wordsData = text.map(new MapFunction<String, Tuple2>() {
@Override
public Tuple2map(String value) throws Exception {
return new Tuple2<>("l_words", value);
           }
       });

//创建redis的配置
       FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("hadoop110").setPort(6379).build();

//创建redissink
       RedisSinkString, String>> redisSink = new RedisSink<>(conf, new MyRedisMapper());

       l_wordsData.addSink(redisSink);

       env.execute("StreamingDemoToRedis");
   }

public static class MyRedisMapper implements RedisMapper>{
//表示从接收的数据中获取需要操作的redis key
@Override
public String getKeyFromData(Tuple2data) {
return data.f0;
       }
//表示从接收的数据中获取需要操作的redis value
@Override
public String getValueFromData(Tuple2data) {
return data.f1;
       }

@Override
public RedisCommandDescription getCommandDescription() {
return new RedisCommandDescription(RedisCommand.LPUSH);
       }
   }

}


2、落地到kafka(生产者)
package xuwei.tech.streaming;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchemaWrapper;

import java.util.Properties;

/**
* kafkaSink
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingKafkaSink {

public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();


//checkpoint配置
       env.enableCheckpointing(5000);
       env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
       env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
       env.getCheckpointConfig().setCheckpointTimeout(60000);
       env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
       env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

//设置statebackend

//env.setStateBackend(new RocksDBStateBackend("hdfs://hadoop100:9000/flink/checkpoints",true));


DataStreamSource<String> text = env.socketTextStream("hadoop100", 9001, "\n");

String brokerList = "hadoop110:9092";
String topic = "t1";

Properties prop = new Properties();
       prop.setProperty("bootstrap.servers",brokerList);

//第一种解决方案,设置FlinkKafkaProducer011里面的事务超时时间
//设置事务超时时间
//prop.setProperty("transaction.timeout.ms",60000*15+"");

//第二种解决方案,设置kafka的最大事务超时时间

//FlinkKafkaProducer011myProducer = new FlinkKafkaProducer011<>(brokerList, topic, new SimpleStringSchema());

//使用仅一次语义的kafkaProducer
FlinkKafkaProducer011<String> myProducer = new FlinkKafkaProducer011<>(topic, new KeyedSerializationSchemaWrapper<String>(new SimpleStringSchema()), prop, FlinkKafkaProducer011.Semantic.EXACTLY_ONCE);
       text.addSink(myProducer);


       env.execute("StreamingFromCollection");


   }
}
3、消费kafka数据
package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;

import java.util.ArrayList;
import java.util.Properties;

/**
* kafkaSource
*
* Created by xuwei.tech on 2018/10/23.
*/
public class StreamingKafkaSource {

public static void main(String[] args) throws Exception {
//获取Flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

//checkpoint配置
       env.enableCheckpointing(5000);
       env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
       env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
       env.getCheckpointConfig().setCheckpointTimeout(60000);
       env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
       env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

//设置statebackend

//env.setStateBackend(new RocksDBStateBackend("hdfs://hadoop100:9000/flink/checkpoints",true));


String topic = "t1";
Properties prop = new Properties();
       prop.setProperty("bootstrap.servers","hadoop110:9092");
       prop.setProperty("group.id","con1");

FlinkKafkaConsumer011<String> myConsumer = new FlinkKafkaConsumer011<>(topic, new SimpleStringSchema(), prop);

       myConsumer.setStartFromGroupOffsets();//默认消费策略

DataStreamSource<String> text = env.addSource(myConsumer);

text.print().setParallelism(1);

       env.execute("StreamingFromCollection");


   }
}


五、DataStream API之watermark

介绍:
  • 在使用eventTime的时候如何处理乱序数据?

  • 我们知道,流处理从事件产生,到流经source,再到operator,中间是有一个过程和时间的。虽然大部分情况下,流到operator的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络延迟等原因,导致乱序的产生,特别是使用kafka的话,多个分区的数据无法保证有序。所以在进行window计算的时候,我们又不能无限期的等下去,必须要有个机制来保证一个特定的时间后,必须触发window去进行计算了。这个特别的机制,就是watermark,watermark是用于处理乱序事件的。

  • watermark可以翻译为水位线

代码:
1、Watermark案例1
package xuwei.tech.streaming.watermark;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

import javax.annotation.Nullable;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;


/**
*
* Watermark 案例
*
* Created by xuwei.tech.
*/
public class StreamingWindowWatermark {

public static void main(String[] args) throws Exception {
//定义socket的端口号
int port = 9000;
//获取运行环境
       StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

//设置使用eventtime,默认是使用processtime
       env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);


//设置并行度为1,默认并行度是当前机器的cpu数量
       env.setParallelism(1);

//连接socket获取输入的数据
       DataStream<String> text = env.socketTextStream("hadoop100", port, "\n");

//解析输入的数据
       DataStreamString, Long>> inputMap = text.map(new MapFunction>() {
@Override
public Tuple2map(String value) throws Exception {
String[] arr = value.split(",");
return new Tuple2<>(arr[0], Long.parseLong(arr[1]));
           }
       });

//抽取timestamp和生成watermark
       DataStreamString, Long>> waterMarkStream = inputMap.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks>() {

           Long currentMaxTimestamp = 0L;
final Long maxOutOfOrderness = 10000L;// 最大允许的乱序时间是10s

           SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
/**
            * 定义生成watermark的逻辑
            * 默认100ms被调用一次
            */
@Nullable
@Override
public Watermark getCurrentWatermark() {
return new Watermark(currentMaxTimestamp - maxOutOfOrderness);
           }

//定义如何提取timestamp
@Override
public long extractTimestamp(Tuple2element, long previousElementTimestamp) {
long timestamp = element.f1;
               currentMaxTimestamp = Math.max(timestamp, currentMaxTimestamp);
long id = Thread.currentThread().getId();
               System.out.println("currentThreadId:"+id+",key:"+element.f0+",eventtime:["+element.f1+"|"+sdf.format(element.f1)+"],currentMaxTimestamp:["+currentMaxTimestamp+"|"+
                       sdf.format(currentMaxTimestamp)+"],watermark:["+getCurrentWatermark().getTimestamp()+"|"+sdf.format(getCurrentWatermark().getTimestamp())+"]");
return timestamp;
           }
       });

       DataStreamwindow = waterMarkStream.keyBy(0)
               .window(TumblingEventTimeWindows.of(Time.seconds(3)))//按照消息的EventTime分配窗口,和调用TimeWindow效果一样
               .apply(new WindowFunction, String, Tuple, TimeWindow>() {
/**
                    * 对window内的数据进行排序,保证数据的顺序
                    * @param tuple
                    * @param window
                    * @param input
                    * @param out
                    * @throws Exception
                    */
@Override
public void apply(Tuple tuple, TimeWindow window, Iterable> input, Collectorout) throws Exception {
String key = tuple.toString();
ListarrarList = new ArrayList();
Iterator> it = input.iterator();
while (it.hasNext()) {
                           Tuple2next = it.next();
                           arrarList.add(next.f1);
                       }
                       Collections.sort(arrarList);
                       SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
String result = key + "," + arrarList.size() + "," + sdf.format(arrarList.get(0)) + "," + sdf.format(arrarList.get(arrarList.size() - 1))
                               + "," + sdf.format(window.getStart()) + "," + sdf.format(window.getEnd());
                       out.collect(result);
                   }
               });
//测试-把结果打印到控制台即可
window.print();

//注意:因为flink是懒加载的,所以必须调用execute方法,上面的代码才会执行
       env.execute("eventtime-watermark");

   }



}
2、Watermark案例2
package xuwei.tech.streaming.watermark;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.watermark.Watermark;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;

import javax.annotation.Nullable;
import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;


/**
*
* Watermark 案例
*
* sideOutputLateData 收集迟到的数据
*
* Created by xuwei.tech.
*/
public class StreamingWindowWatermark2 {

public static void main(String[] args) throws Exception {
//定义socket的端口号
int port = 9000;
//获取运行环境
       StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

//设置使用eventtime,默认是使用processtime
       env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

//设置并行度为1,默认并行度是当前机器的cpu数量
       env.setParallelism(1);

//连接socket获取输入的数据
       DataStream<String> text = env.socketTextStream("hadoop100", port, "\n");

//解析输入的数据
       DataStreamString, Long>> inputMap = text.map(new MapFunction>() {
@Override
public Tuple2map(String value) throws Exception {
String[] arr = value.split(",");
return new Tuple2<>(arr[0], Long.parseLong(arr[1]));
           }
       });

//抽取timestamp和生成watermark
       DataStreamString, Long>> waterMarkStream = inputMap.assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks>() {

           Long currentMaxTimestamp = 0L;
final Long maxOutOfOrderness = 10000L;// 最大允许的乱序时间是10s

           SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
/**
            * 定义生成watermark的逻辑
            * 默认100ms被调用一次
            */
@Nullable
@Override
public Watermark getCurrentWatermark() {
return new Watermark(currentMaxTimestamp - maxOutOfOrderness);
           }

//定义如何提取timestamp
@Override
public long extractTimestamp(Tuple2element, long previousElementTimestamp) {
long timestamp = element.f1;
               currentMaxTimestamp = Math.max(timestamp, currentMaxTimestamp);
               System.out.println("key:"+element.f0+",eventtime:["+element.f1+"|"+sdf.format(element.f1)+"],currentMaxTimestamp:["+currentMaxTimestamp+"|"+
                       sdf.format(currentMaxTimestamp)+"],watermark:["+getCurrentWatermark().getTimestamp()+"|"+sdf.format(getCurrentWatermark().getTimestamp())+"]");
return timestamp;
           }
       });

//保存被丢弃的数据
       OutputTagString, Long>> outputTag = new OutputTag>("late-data"){};
//注意,由于getSideOutput方法是SingleOutputStreamOperator子类中的特有方法,所以这里的类型,不能使用它的父类dataStream。
       SingleOutputStreamOperator<String> window = waterMarkStream.keyBy(0)
               .window(TumblingEventTimeWindows.of(Time.seconds(3)))//按照消息的EventTime分配窗口,和调用TimeWindow效果一样
//.allowedLateness(Time.seconds(2))//允许数据迟到2秒
               .sideOutputLateData(outputTag)
               .apply(new WindowFunction, String, Tuple, TimeWindow>() {
/**
                    * 对window内的数据进行排序,保证数据的顺序
                    * @param tuple
                    * @param window
                    * @param input
                    * @param out
                    * @throws Exception
                    */
@Override
public void apply(Tuple tuple, TimeWindow window, Iterable> input, Collectorout) throws Exception {
String key = tuple.toString();
ListarrarList = new ArrayList();
Iterator> it = input.iterator();
while (it.hasNext()) {
                           Tuple2next = it.next();
                           arrarList.add(next.f1);
                       }
                       Collections.sort(arrarList);
                       SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
String result = key + "," + arrarList.size() + "," + sdf.format(arrarList.get(0)) + "," + sdf.format(arrarList.get(arrarList.size() - 1))
                               + "," + sdf.format(window.getStart()) + "," + sdf.format(window.getEnd());
                       out.collect(result);
                   }
               });
//把迟到的数据暂时打印到控制台,实际中可以保存到其他存储介质中
       DataStreamString, Long>> sideOutput = window.getSideOutput(outputTag);
       sideOutput.print();
//测试-把结果打印到控制台即可
window.print();

//注意:因为flink是懒加载的,所以必须调用execute方法,上面的代码才会执行
       env.execute("eventtime-watermark");

   }



}

六、Flink Window和Time详解

①window操作与介绍

介绍:
  1. window介绍:

  • 聚合事件(比如计数、求和)在流上的工作方式与批处理不同。

  • 比如,对流中的所有元素进行计数是不可能的,因为通常流是无限的(无界的)。所以,流上的聚合需要由 window 来划定范围,比如 “计算过去的5分钟” ,或者 “最后100个元素的和” 。

  • window是一种可以把无限数据切割为有限数据块的手段

  • 窗口可以是 时间驱动的 【Time Window】(比如:每30秒)或者 数据驱动的【Count Window】 (比如:每100个元素)。

  1. window类型

  • 窗口通常被区分为不同的类型:

  • tumbling windows:滚动窗口 【没有重叠】

  • sliding windows:滑动窗口 【有重叠】

  • session windows:会话窗口

代码:
1、window 全量聚合
介绍:
  • 全量聚合

  • 等属于窗口的数据到齐,才开始进行聚合计算【可以实现对窗口内的数据进行排序等需求】

  • apply(windowFunction)

  • process(processWindowFunction)

  • processWindowFunction比windowFunction提供了更多的上下文信息。

package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;

/**
* window 全量聚合
*/
public class SocketDemoFullCount {

public static void main(String[] args) throws Exception{
//获取需要的端口号
int port;
try {
ParameterTool parameterTool = ParameterTool.fromArgs(args);
           port = parameterTool.getInt("port");
       }catch (Exception e){
System.err.println("No port set. use default port 9000--java");
           port = 9000;
       }

//获取flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

String hostname = "hadoop100";
String delimiter = "\n";
//连接socket获取输入的数据
DataStreamSource<String> text = env.socketTextStream(hostname, port, delimiter);

DataStream<Tuple2<Integer,Integer>> intData = text.map(new MapFunction<String, Tuple2<Integer,Integer>>() {
           @Override
public Tuple2<Integer,Integer> map(String value) throws Exception {
return new Tuple2<>(1,Integer.parseInt(value));
           }
       });

       intData.keyBy(0)
               .timeWindow(Time.seconds(5))
               .process(new ProcessWindowFunction<Tuple2<Integer,Integer>, String, Tuple, TimeWindow>() {
                   @Override
public void process(Tuple key, Context context, Iterable> elements, Collectorout)
throws Exception {
System.out.println("执行process。。。");
                       long count = 0;
for(Tuple2<Integer,Integer> element: elements){
count++;
                       }
out.collect("window:"+context.window()+",count:"+count);
                   }
               }).print();


//这一行代码一定要实现,否则程序不执行
       env.execute("Socket window count");

   }
}

2、window增量聚合
介绍:
  • 增量聚合

  • 窗口中每进入一条数据,就进行一次计算

  • reduce(reduceFunction)

  • aggregate(aggregateFunction)

  • sum(),min(),max()

package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;

/**
* window 增量聚合
*/
public class SocketDemoIncrAgg {

public static void main(String[] args) throws Exception{
//获取需要的端口号
int port;
try {
ParameterTool parameterTool = ParameterTool.fromArgs(args);
           port = parameterTool.getInt("port");
       }catch (Exception e){
System.err.println("No port set. use default port 9000--java");
           port = 9000;
       }

//获取flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

String hostname = "hadoop100";
String delimiter = "\n";
//连接socket获取输入的数据
DataStreamSource<String> text = env.socketTextStream(hostname, port, delimiter);

DataStream<Tuple2<Integer,Integer>> intData = text.map(new MapFunction<String, Tuple2<Integer,Integer>>() {
           @Override
public Tuple2<Integer,Integer> map(String value) throws Exception {
return new Tuple2<>(1,Integer.parseInt(value));
           }
       });

       intData.keyBy(0)
               .timeWindow(Time.seconds(5))
               .reduce(new ReduceFunction<Tuple2<Integer, Integer>>() {
                   @Override
public Tuple2<Integer, Integer> reduce(Tuple2value1, Tuple2value2) throws Exception {
System.out.println("执行reduce操作:"+value1+","+value2);
return new Tuple2<>(value1.f0,value1.f1+value2.f1);
                   }
               }).print();


//这一行代码一定要实现,否则程序不执行
       env.execute("Socket window count");

   }
}

8、窗口滑动计算
package xuwei.tech.streaming;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.contrib.streaming.state.RocksDBStateBackend;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.runtime.state.memory.MemoryStateBackend;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;

/**
* 滑动窗口计算
*
* 通过socket模拟产生单词数据
* flink对数据进行统计计算
*
* 需要实现每隔1秒对最近2秒内的数据进行汇总计算
*
*
* Created by xuwei.tech on 2018/10/8.
*/
public class SocketWindowWordCountJava {

public static void main(String[] args) throws Exception{
//获取需要的端口号
int port;
try {
ParameterTool parameterTool = ParameterTool.fromArgs(args);
           port = parameterTool.getInt("port");
       }catch (Exception e){
System.err.println("No port set. use default port 9000--java");
           port = 9000;
       }

//获取flink的运行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

String hostname = "hadoop100";
String delimiter = "\n";
//连接socket获取输入的数据
DataStreamSource<String> text = env.socketTextStream(hostname, port, delimiter);

// a a c

// a 1
// a 1
// c 1
DataStream<WordWithCount> windowCounts = text.flatMap(new FlatMapFunction<String, WordWithCount>() {
public void flatMap(String value, Collector<WordWithCount> out) throws Exception {
String[] splits = value.split("\\s");
for (String word : splits) {
                   out.collect(new WordWithCount(word, 1L));
               }
           }
       }).keyBy("word")
               .timeWindow(Time.seconds(2), Time.seconds(1))//指定时间窗口大小为2秒,指定时间间隔为1秒
               .sum("count");//在这里使用sum或者reduce都可以
/*.reduce(new ReduceFunction() {
                                   public WordWithCount reduce(WordWithCount a, WordWithCount b) throws Exception {

                                       return new WordWithCount(a.word,a.count+b.count);
                                   }
                               })*/

//把数据打印到控制台并且设置并行度
       windowCounts.print().setParallelism(1);

//这一行代码一定要实现,否则程序不执行
       env.execute("Socket window count");

   }

public static class WordWithCount{
public String word;
public long count;
public  WordWithCount(){}
public WordWithCount(String word,long count){
this.word = word;
this.count = count;
       }
       @Override
public String toString() {
return "WordWithCount{" +
"word='" + word + '\'' +
", count=" + count +
'}';
       }
   }

}

window总结与感悟:

②time操作与介绍

介绍:
  • 针对stream数据中的时间,可以分为以下三种

  • Event Time:事件产生的时间,它通常由事件中的时间戳描述。

  • Ingestion time:事件进入Flink的时间

  • Processing Time:事件被处理时当前系统的时间

代码:
1、Processing Time
package myflink.job;

import com.alibaba.fastjson.JSON;
import myflink.model.UrlInfo;
import org.apache.commons.codec.digest.DigestUtils;
import org.apache.commons.lang3.time.DateFormatUtils;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;

import java.util.Date;
import java.util.Properties;

public class WindowTest {

public static void main(String[] args) throws Exception {

// 从kafka中获取数据
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

Properties properties = new Properties();
       properties.put("bootstrap.servers", "localhost:9092");
       properties.put("zookeeper.connect", "localhost:2181");
       properties.put("group.id", "metric-group");
       properties.put("auto.offset.reset", "latest");
       properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
       properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

SingleOutputStreamOperatordataStreamSource = env.addSource(
               new FlinkKafkaConsumer010(
"testjin",// topic
                       new SimpleStringSchema(),
                       properties
               )
       ).setParallelism(1)
// map操作,转换,从一个数据流转换成另一个数据流,这里是从string-->UrlInfo
               .map(string -> {
UrlInfo urlInfo = JSON.parseObject(string, UrlInfo.class);
                   urlInfo.setDomain(urlInfo.generateDomain());
return urlInfo;
               });

// 根据domain做keyby
KeyedStreamkeyedStream = dataStreamSource.keyBy(new KeySelector() {
           @Override
public String getKey(UrlInfo urlInfo) throws Exception {
return urlInfo.getDomain();
           }
       });

// 设置时间类型为Processing Time
       env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);

// 使用timeWindow
SingleOutputStreamOperatorwindowReduceStream = keyedStream.timeWindow(Time.seconds(30))
       .reduce((ReduceFunction) (t1, t2) -> {
UrlInfo urlInfo = new UrlInfo();

// domain都是同一个partition,所以都是同一个
           urlInfo.setDomain(t1.getDomain());
           urlInfo.setUrl(urlInfo.getDomain() + "/reduce/" + DateFormatUtils.format(new Date(),"yyyy-MM-dd'T'HH:mm:ss"));
           urlInfo.setHash(DigestUtils.md5Hex(urlInfo.getUrl()));

           urlInfo.setCount(t1.getCount() + 1);// 在reduce中做累加计数

return urlInfo;
       }).returns(UrlInfo.class);

       windowReduceStream.addSink(new PrintSinkFunction<>());

       env.execute("execute window reduce info");
   }
}


点赞
收藏
表情
图片
附件