联系客服
客服二维码

联系客服获取更多资料

微信号:LingLab1

客服电话:010-82185409

意见反馈
关注我们
关注公众号

关注公众号

linglab语言实验室

回到顶部
更会“听话”的未来计算机——自然语言处理入门

594 阅读 2020-09-18 10:33:02 上传

以下文章来源于 十分语言学


如何让人们日常使用的
汉语、英语这些自然语言
真正能为计算机所处理?
这一令人兴奋不已的问题
其实早在计算机出现之前
英国数学家图灵曾天才的预见到
计算机和自然语言
将会结下不解之缘
 
1949年美国洛克菲勒基金会
副总裁威弗首先提出了
机器翻译设计方案
20世纪60年代初
自然语言理解真正成为一门学科
1962年国际上成立了
计算语言学协会
机器翻译的研究工作
在国外大规模兴起
伴随着大量应用实践
研究者认识到
一个好的机器翻译系统
应该把原语的语义
准确无误地在译语中表现出来
即在语义上机器翻译
必须保持原语和译语的一致
此后,语义分析成为
自然语言处理的核心部分
 
数据(Data)→
信息(Information)→
知识(Knowledge)→
“情报/智能”(Intelligence)
如何完成上述转换
实现真正的人机交互?
计算机如何彻底征服自然语言?
这些,都是无时无刻
不在发生的边界探索
一点一滴的小突破
都会被关注、被记录





湾区博士邀请来自上海交通大学的陶博士开设人工智能课题《自然语言处理入门》,系统介绍行为自然语言处理的主要内容和发展历程,重点讲解基于深度学习的自然语言处理的已有成果和未来研究方向,帮助学员从零基础迅速上手一门编程语言——python,引导学员确定感兴趣的子课题如文本分类、机器翻译、文本理解等,并掌握研究方法,同导师合作或者独立完成学术论文。
 
本课题邀请对自然语言处理以及与其关联的交叉学科、编程、python语言等领域感兴趣的学员参与研究。与陶博士一起深度交流,从乏味的日常学习中脱身而出,迈进真正的学术殿堂,驰骋在星辰大海的壮阔世界。




课题内容


第一阶段:研究领域介绍
系统介绍行为自然语言处理的主要内容和发展历程,从数学、人工智能、大数据以及计算科学的角度理解自然语言处理,重点讲解基于深度学习的自然语言处理的已有成果和未来研究方向。学员根据了解,在文本分类、机器翻译、文本理解等子课题中进行选择。
 
第二阶段:知识拓展和补充
系统介绍自然语言处理的研究方法、过程、论文撰写流程和技巧。介绍编程语言python的零基础迅速入门方法。
 
第三阶段:选题与研究
介绍每一个子课题的研究现状和潜在研究方向,细致讲解研究方法,包括:数据集搜集、实验环境搭建、模型算法的代码编写、服务器上做实验等具体研究过程。
 
第四阶段:研究成果
了解文献检索方法和论文阅读技巧,培养学术论文写作能力,掌握学术论文写作过程和思路,在项目期间内能够同导师合作或者独立完成一篇学术论文。








课题导师

   
陶博士

  • 上海交通大学计算机科学与技术博士

  • 研究方向为:深度学习以及自然语言处理,计算机视觉

  • 参与过多项国家重点课题,包括公共区域关键人物定位跟踪等

  • 曾利用自然语言处理技术获取关键信息,解决大型互联网公司海量信息自动智能分析处理问题







博士推荐阅读

    

[1] D. Nadeau and S. Sekine, “A survey of named entity recognition and classification,” Lingvist. Investig., vol. 30, no. 1, pp. 3–26, 2007. [2] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu, “ERNIE: enhanced language representation with informative entities,” in ACL, 2019, pp. 1441–1451.
[3] P. Cheng and K. Erk, “Attending to entities for better text understanding,” arXiv preprint arXiv:1911.04361, 2019.
[4] J. Guo, G. Xu, X. Cheng, and H. Li, “Named entity recognition in query,” in SIGIR, 2009, pp. 267–274.
[5] D. Petkova and W. B. Croft, “Proximity-based document representation for named entity retrieval,” in CIKM, 2007, pp. 731–740.
[6] C. Aone, M. E. Okurowski, and J. Gorlinsky, “A trainable summarizer with knowledge acquired from robust nlp techniques,” Adv. Autom. Text Summ., vol. 71, 1999.
[7] D. M. Aliod, M. van Zaanen, and D. Smith, “Named entity recognition for question answering,” in ALTA, 2006, pp. 51–58.
[8] B. Babych and A. Hartley, “Improving machine translation quality with automatic named entity recognition,” in EAMT, 2003, pp. 1–8.
[9] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soderland, D. S. Weld, and A. Yates, “Unsupervised namedentity extraction from the web: An experimental study,” Artif. Intell., vol. 165, no. 1, pp. 91–134, 2005.
[10] R. Grishman and B. Sundheim, “Message understanding conference-6: A brief history,” in COLING, vol. 1, 1996.
[11] E. F. Tjong Kim Sang and F. De Meulder, “Introduction to the conll-2003 shared task: Language-independent named entity recognition,” in NAACL-HLT, 2003, pp. 142–147.
[12] G. R. Doddington, A. Mitchell, M. A. Przybocki, L. A. Ramshaw, S. Strassel, and R. M. Weischedel, “The automatic content extraction (ace) program-tasks, data, and evaluation.” in LREC, vol. 2, 2004, p. 1.
[13] G. Demartini, T. Iofciu, and A. P. De Vries, “Overview of the inex 2009 entity ranking track,” in INEX, 2009, pp. 254–264.
[14] K. Balog, P. Serdyukov, and A. P. De Vries, “Overview of the trec 2010 entity track,” in TREC, 2010.
[15] G. Petasis, A. Cucchiarelli, P. Velardi, G. Paliouras, V. Karkaletsis, and C. D. Spyropoulos, “Automatic adaptation of proper noun dictionaries through cooperation of machine learning and probabilistic methods,” in SIGIR, 2000, pp. 128–135.
[16] S. A. Kripke, “Naming and necessity,” in Semantics of natural language. Springer, 1972, pp. 253–355.
[17] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natural language processing (almost) from scratch,” J. Mach. Learn. Res., vol. 12, no. Aug, pp. 2493–2537, 2011.
[18] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence tagging,” arXiv preprint arXiv:1508.01991, 2015.
[19] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural architectures for named entity recognition,” in NAACL, 2016, pp. 260–270.
[20] J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional lstm-cnns,” Trans. Assoc. Comput. Linguist., pp. 357–370, 2016.
[21] M. E. Peters, W. Ammar, C. Bhagavatula, and R. Power, “Semisupervised sequence tagging with bidirectional language models,” in ACL, 2017, pp. 1756–1765.
[22] M. Marrero, J. Urbano, S. Sánchez-Cuadrado, J. Morato, and J. M. Gómez-Berbís, “Named entity recognition: fallacies, challenges and opportunities,” Comput. Stand. Interfaces, vol. 35, no. 5, pp. 482–489, 2013.
[23] M. L. Patawar and M. Potey, “Approaches to named entity recognition: a survey,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 3, no. 12, pp. 12 201–12 208, 2015.
[24] C. J. Saju and A. Shaja, “A survey on efficient extraction of named entities from new domains using big data analytics,” in ICRTCCM, 2017, pp. 170–175.
[25] X. Dai, “Recognizing complex entity mentions: A review and future directions,” in ACL, 2018, pp. 37–44.
[26] V. Yadav and S. Bethard, “A survey on recent advances in named entity recognition from deep learning models,” in COLING, 2018, pp. 2145–2158.
[27] A. Goyal, V. Gupta, and M. Kumar, “Recent named entity recognition and classification techniques: A systematic review,” Comput. Sci. Rev., vol. 29, pp. 21–43, 2018.
[28] R. Sharnagat, “Named entity recognition: A literature survey,” Center For Indian Language Technology, 2014.
[29] X. Ling and D. S. Weld, “Fine-grained entity recognition.” in AAAI, vol. 12, 2012, pp. 94–100.
[30] X. Ren, W. He, M. Qu, L. Huang, H. Ji, and J. Han, “Afet: Automatic fine-grained entity typing by hierarchical partial-label embedding,” in EMNLP, 2016, pp. 1369–1378.
[31] A. Abhishek, A. Anand, and A. Awekar, “Fine-grained entity type classification by jointly learning representations and label embeddings,” in EACL, 2017, pp. 797–807.
[32] A. Lal, A. Tomer, and C. R. Chowdary, “Sane: System for fine grained named entity typing on textual data,” in WWW, 2017, pp. 227–230.
[33] L. d. Corro, A. Abujabal, R. Gemulla, and G. Weikum, “Finet: Context-aware fine-grained named entity typing,” in EMNLP, 2015, pp. 868–878.
[34] K. Balog, Entity-Oriented Search.Springer, 2018.
[35] H. Raviv, O. Kurland, and D. Carmel, “Document retrieval using entity-based language models,” in SIGIR, 2016, pp. 65–74.




 

 

参加课题



湾区博士的课题研究项目跨度12-16周,由博士1对1 指导,在选定的专业领域里,确定有价值的科研主题,开展定量和定性研究,并最终收获具有独立知识产权的一个研究结论和一篇学术论文。
 






关于湾区博士



湾区博士是国内领先的科研和学术背景提升平台。平台上汇聚了来自国内外众多名校包括清华、北大、麻省理工、斯坦福等在内的近两百名博士,他们在各自的专业领域,带领学生开展真正的前沿科学研究。




课题研究项目



加入湾区博士,你可以参加短期跨度12-16周、长期跨度1-2年的课题研究项目,由博士1对1指导,在选定的专业领域里,确定有价值的科研主题,开展定量和定性研究,并最终获得一个属于学生自己的研究结论。

加入湾区博士,你可以在数十个细分学科、几百个研究课题中找到自己的学术兴趣所在。




课题项目特色



1,三个项目模块
    导论课程,专题研究,和论文课程
2,60课时
    36科研课时,24个答疑课时
3,两位博士
    学术导师教你开始科研,课题导师带你完成科研
4,两次答辩
    文献阅读答辩,论文答辩
5,一篇论文
    一篇有摘要、正文、引文、参考文献和附录、并符合学术期刊发表规范的学术论文
6,一封学术推荐信
    一封包含学生丰富科研细节和成果描述的学术推荐信
7,八个收获
    查阅文献技巧,文献快速阅读技巧,文献精读技巧,选题头脑风暴技巧,实验设计技巧,论文答辩技巧,论文投稿技巧,论文写作技巧
8,一次竞赛辅导
    提供AMC,丘成桐,iGem,普林斯顿数学竞赛,协和历史论文竞赛等专业辅导







论文展示



参加课题的同学将完成一篇学术论文,彰显自己的学术能力,从而帮助斩获了海外名校的录取,或者收获学术竞赛奖牌。





论文发表

   
学术论文将会投稿发表在国际SCI刊物,还是EI或CSCI,或者是北大核心,南大核心等正规学术刊物上。同学们将会有一次完整的科研体验。





研究现场

   
在课题项目周期里,同学将会和博士导师们深度接触:头脑风暴确定课题方向,文献阅读疑难解惑,参加实验室实验或田野调查访谈,以及论文答辩。




学术交流



湾区博士定期组织的各种学术交流活动,参加课题的学生将结识非常多优秀的博士、学长、和同学们,就热点的学术话题展开讨论。参加湾区博士课题项目将会是一次有趣又有益的经历。







点赞
收藏
表情
图片
附件